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Abstract 

There exists a requirement to assess the maximum credible blast from an event in a 
magazine. This is particularly relevant to naval platforms where space is at a premium, and 
control measures may be applied to minimise the event to tolerable levels. Upper bounds 
based on the total net explosive quantity (NEQ) of the stored munitions are inherently 
pessimistic, so there is interest in obtaining more realistic estimates. 
            Energy conservation implies that the blast from a cased munition is less than the 
blast from a bare charge of the same NEQ. Indeed this is the basis of the familiar Gurney 
approach to metal acceleration by explosives. The paper reviews this formalism, and a 
number of existing formulae for effective NEQ, or equivalent bare charge, in terms of ratio of 
casing weight  to charge weight, in the light of trials data from a number of sources. These 
include blast data from in-service munitions as well as from experimental configurations.  

The evidence indicates that the nature of the casing material, as well as casing 
mass, is important in determining the equivalent bare charge. Potential explanations, and 
their implications, are discussed, and a correlation with casing material properties is 
developed. 

 
Introduction 
 There exists a requirement (see other papers in this volume) to assess the 
maximum credible blast from an event in a magazine. This is particularly relevant to 
naval platforms where space is at a premium. Upper bounds based on the total net 
explosive quantity (NEQ) of the stored munitions are inherently pessimistic, so there is 
interest in obtaining more realistic estimates. 

The usual approach is to relate the blast from a cased charge to that from a bare 
charge of the same explosive. The equivalent bare charge is defined as that quantity of 
the explosive which yields the same value of the airblast parameter of interest (usually 
peak overpressure or positive impulse) as the cased munition at the same distance from 
the detonation source. For assessing the hazard from a store containing mixed 
munitions these equivalent bare charges are then expressed in terms of TNT 
equivalents. 
 Energy conservation implies that the blast from a cased munition is less than the 
blast from a bare charge of the same NEQ, since casing fragments are projected. 
Indeed this is the basis of the familiar Gurney approach to metal acceleration by 
explosives. A number of formulae [1,2,3,4] for equivalent bare charge weight, or 
effective NEQ, in terms of the ratio of casing weight (M) to explosive charge weight (C) 
have been developed. These are briefly reviewed in the light of experimental and trials 
data from a number of sources. 

 There exists a considerable body of evidence that material properties of the 
casing are important in determining the equivalent bare charge weight, and hence that 
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these formulae are over-simplistic. Some improvements are suggested both in terms of 
M/C correlations derived from munition data, and improved estimates of Gurney energy 
related to casing material properties. 
 
Equivalent bare charge formulae and concerns 

Following the approach of Gurney [1] to metal acceleration, it is assumed that: 
i) Each explosive has a characteristic specific energy, EG, which is converted to 

the kinetic energy of the casing material and the product gases after 
detonation. 

ii) Partitioning of the energy between the driven material (casing) and the 
product gases may be calculated on the basis of a uniform gas density, and a 
linear gas velocity profile. 

iii) The explosive is ideal, or near ideal, so that all reactions are completed prior 
to casing rupture. 

iv) The explosive’s detonation energy continues to be converted into kinetic 
energy until the casing fragments attain a steady velocity. 

 
If a long cylindrical cased charge of mass C, with a casing of mass M, is considered, 
this leads at rupture to the energy balance  

C EG = ½ M v2 + ¼ C v2,                                                (1) 
where v denotes the fragment velocity. This derivation considers purely radial 
axisymmetric expansion: formulae for finite cylinders with endplates, and other 
geometries may also be derived (see eg. [5]) 

If the detonation energy of the explosive is denoted by E0, then the total energy 
liberated into the gases is given as the sum of the gas kinetic energy and the internal 
energy: 

Gas energy = ( )
C

M21
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+
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Let the Gurney energy EG be a fraction f of the detonation energy E0. The equivalent 
bare charge (Cb) is the uncased explosive charge which liberates the same amount of 
energy to the gas, hence 
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Using experimental fragment velocity data from TNT filled weapons, Gurney found that f 
was around 0.8. Using this value of f leads to what is usually referred to as Fano’s 
formula, which first appears in [2]. A similar value was found for HBX-1 filled steel cased 
munitions [2]. 
 
 An alternative assumption to (ii), above, is that at the time of rupture nearly all the 
product gas travels in a cylindrical shell with the same velocity as the fragments. This 
yields 

C EG = ½ M v2 + ½  C v2, 
In place of (1), and following the procedure above, with f = 0.8, leads to 
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This formula is derived in [2] and appears in [3]. It is claimed that this formula gives an 
improved fit to the experimental data.  

Some alternative fragmentation data for TNT filled cases considered in [2] yields 
the estimate f = 0.53, and a correspondingly modified bare charge formula. This value of 
f is significantly different, and does not support the hypothesis that the Gurney energy is 
a characteristic of the explosive. 
 
 An empirical formula which is claimed to fit experimental impulse data is given in 
[2] as 

( )

C
M1

M1
C
M1

C
C

'

b

+

−+
= ,                                               (4) 

where M’ =   M/C   if     M/C<1,  M’ =1 if M/C ≥1. 
In [2], these formulae (2,3,4) are correlated with experimental data for pressure 

histories from a number of steel cased TNT filled munitions, and it is found that they 
agree best with positive impulse data. If the equivalent bare charge for peak pressure is 
required, the right-hand side of any of the above formulae for Cb/C should be multiplied 
by 1.19. (4) including the factor 1.19 appears in a number of later publications (eg. [3,4]) 
as an accepted formula for the equivalent bare charge weight.  
 
 Thus it is seen that there exist some legitimate doubts concerning the accuracy 
of the available formulae. The first two, (2) and (3) above, depend on the assumption 
that the Gurney energy is a characteristic of the explosive. Further evidence against 
this, in addition to that mentioned above, is given in Backofen [6], and related 
publications, in the form of data assembled from cylinder tests using steel and copper 
cylinders, shown in Table 1 below. 
 

Explosive EG from steel cylinder 
(kJ/kg) 

EG from copper cylinder 
(kJ/kg) 

Comp. A-3 (RDX/Wax:91/9) 2918 3458 
Cyclotol (75/25 cast) 2691 3892 
Comp. B 2668 3645 
TNT (cast) 2081 2808 
Tetryl 2440 3125 

Table 1. Comparison of Gurney energies derived from cylinder tests using steel and copper cylinders. 
 
Clearly the concept that the Gurney energy is a characteristic of the explosive alone, 
and is independent the casing material, is not supported by experimental evidence. 

 Moreover the value of f varies significantly between compositions as shown in 
Table 2 below, particularly when explosives are non-ideal. Therefore the value of f 
employed in (2) or (3) should depend on the nature of the fill. 

The formula (3) suggests that the bare charge equivalent is independent of the 
nature of the explosive fill, or at least that the factor 1.19 obtained through examination  
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Explosive Detonation 
velocity (km/s) 

Gurney energy 
(kJ/kg) 

Heat of detonation 
(kJ/kg) 

 f =EG/E0 

TNT 6.86 2977 4518.7 0.659 
RDX 8.70 4004 5355.5 0.748 
HMX 8.83 3920 5711 0.686 
PETN 8.26 4292 4795 0.895 
RDX/TNT 60/40 7.92 3672 5000 0.734 
Tritonal (80/20) 6.70 2690 7406 0.363 
Cyclotol (75/25) 8.25 3892 5125 0.759 
Tetryl 7.57 3125 4602 0.679 
Comp A-3 8.14 3458 5106 0.677 

Table 2 : Values of EG/E0 for some common explosives (from [5])  
 
of TNT filled munitions has wider applicability. However the variation in f demonstrated 
in Table 2 casts doubt on this. Moreover, as the factor 1.19 is dependent on the 
processing of the overpressure data to determine Cb from the measured results (free air 
data for cast TNT from Kirkwood and Brinkley [7] corrected for ground reflection using a 
coefficient of 1.8), it should be investigated further. 
 
 
Munitions data 

The concerns expressed above may be regarded as conceptual in nature. If the 
formulae give good agreement with the values of equivalent bare charge determined 
from blast overpressure measurements, their use, in practical hazard assessment at 
least, can be justified. Therefore the equivalent bare charges determined from blast 
overpressure for a range of munitions are compared with the values from the formulae 
(2,3,4) to determine their predictive ability. 

 First the underlying experimental data of [2], pressure measurements at various 
distances from a number of TNT filled steel cased charges, was re-examined. Current 
practice is to use Kingery curves [8], or their embodiment in tools such as Conwep [9], 
to relate measured peak overpressures or positive impulses to the equivalent bare 
charge of TNT. As the pressures were measured at considerable distances the 
hemispherical surface burst curves were used, assuming that the height of burst was 
small compared with the distance to the gauges.  

The results are shown plotted and compared with the formulae above in figure 1 
overleaf. It is seen that the overpressure data as processed using Kingery gives 
consistently higher equivalent bare charges than the previous approach. Fisher’s 
formula (4) gives good agreement with the old processing approach, but requires 
modification of the pre-multiplying factor for pressure to 1.33 for the Kingery approach. 
The formulae (2,3) consistently yield lower values of the equivalent bare charge than 
the experimental data. As f is increased the equivalent bare charge is reduced. 

It was found that exponential curves gave the best fit to the data: for the Kingery 
equivalent bare charge the recommended form is  

( )CM0.4355-exp1.2691
C
Cb = , 

shown as the dotted line in figure 2 below. The solid curve gives the best fit to 
equivalent bare charges from Fisher’s analysis of the recorded overpressure data. 
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Cb/C for various formulae
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Figure 1: Ratio of equivalent bare charge for peak pressure to charge weight calculated by various 

methods for TNT filled steel cased munitions. The results from the experimental measurements 
are labelled as blast with the processing method: Fisher or Kingery.  Fano I, II denotes results 
from (2), (3) respectively, with f = 0.6, 0.8. 
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Figure 2: Showing best-fit exponential curves to the equivalent bare charges as estimated from blast 

overpressure data. 
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However, what if data obtained from trials on current UK munitions is added? 
Using the same Kingery approach to obtaining equivalent bare charges leads to Figure 
3 below, which illustrates a potentially hazardous situation. 

The data is widely scattered, giving equivalent bare charges up to 100% higher 
than the best-fit curve obtained previously. It is also clear that when higher M/C values 
are included the previous curve descends too steeply. The best fit to the combined data 
is 

( )CM0.1714-exp1.0032
C
Cb = ,                                               (5) 

shown in  Figure 4 overleaf, but the R 2 value is low due to the scatter of the data. 
 

 It is clear that if this approach is to be used for realistic hazard assessment, a 
better understanding of the important factors is required in order to reduce the scatter, 
which is still up to 50% above or below the suggested curve. We therefore return to a 
more detailed consideration of the overall energy balance for a detonating munition. 
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Figure 3: Ratio of equivalent bare charge for peak pressure to charge weight for UK munitions 

added to data from [2] analysed using Kingery, showing best fit curve to that data. 
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Cb/C v M/C
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Figure 4: Best fit curve to the combined data of [2] and UK munitions. 
 
 
 
 
Energy considerations 

Conservation of energy applied to the detonation of a cased condensed phase 
explosive leads to the following energy balance at case rupture: 
 
    Energy     =    internal energy + kinetic energy + kinetic energy + energy absorbed  
    released          of products          of products          of casing            by casing           
 
From this it is deduced (see for example [10]) that 

E0  = EG + Eint (ρ)  
where E0 is the specific internal energy of the undetonated explosive, and EG is the 
Gurney energy, the specific energy converted to gas and casing kinetic energy, and 
Eint(ρ) is the internal energy per unit mass of the detonation products of density ρ at the 
instant of expansion considered. This approach neglects both energy absorbed by the 
casing material in the form of strain/heat, Es, and the kinetic energy imparted to the 
surrounding atmosphere by the expansion of the casing prior to rupture. 
 Assuming that the products expand adiabatically from the Chapman-Jouguet 
pressure, and that they behave as a perfect gas with a constant polytropic coefficient, γ, 
yields 

Eint(ρ) = 
ρ1)(γ

p
−
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where p denotes pressure. These assumptions effectively imply that the explosive is 
ideal, and that the origin of internal energies is the state of infinite expansion of the 
detonation products. 

With this equation of state it is then well-known ([10,11]) that 
D2 = 2(γ2 – 1) E0 , 

,
1γ

Dρp
2

0
CJ +
=  and 0CJ ρ

γ
1γρ +

=  

where D denotes detonation velocity, pCJ and ρCJ denote pressure and density of the 
detonation products in the Chapman-Jouguet state, and ρ0 is the density of the 
undetonated explosive. Assuming adiabatic expansion of the detonation products it may 
then be shown [10] that 
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The Gurney energy is therefore dependent on the degree of expansion considered. 
Once the casing ruptures the products gases will expand past the fragments, and the 
process of fragment acceleration effectively ceases shortly thereafter. The value of the 
Gurney energy is therefore dependent also on the tensile properties of the casing 
material, as this will determine the value of (ρ/ρ0) at which rupture occurs. It should be 
noted that this result is independent of any assumptions about the form of the 
expression for the kinetic energy of the gas and casing in terms of fragment velocity, or 
the relative mass of metal and explosive. This demonstrates that EG is dependent on 
casing material, and is not a characteristic of explosive alone. 

It should be noted that if ES is not neglected, (6) above becomes 
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Rupture of the casing 
Next the rupture process is considered in more detail. It is usually assumed that 

fragmentation occurs when the inner region of compressive hoop stress disappears and 
the pressure on the inner case surface is equal to the yield stress, σy, of the case 
material (see [12]). Assuming that the explosive products expand adiabatically yields at 
fracture, when r = rf, 

y

2 γ
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, 

where P0  denotes the pressure on the inner case surface when the case radius r = r0. 
For cylindrical geometry, mass conservation yields ρr2 = constant. Thus, at fracture, 
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Substituting into the energy balance (7) yields 
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If Es is negligible we thus obtain 
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If Es is not negligible, it may still be appropriate to expect that it is related to σy/P0, and 
that an expression for f with the same dependence on σy/P0 as (9) may be obtained. 

 Therefore the cylinder test data of Table 1 above, which showed that f or Eg is 
case material dependent, was re-examined to test this hypothesis. For each case the 
pressure P0 was evaluated by assuming adiabatic expansion from the CJ state to 
density ρ0, 

γ

CJ

0
CJ0 ρ

ρPP ⎟
⎠
⎞⎜

⎝
⎛=  

using published data for the CJ parameters [5]. The values of yield stress were taken as 
350 MPa for steel, and 175 MPa for copper. The data is shown in Table 3, and results 
plotted in Figure 4 below. 
 

Steel cylinder Copper cylinder Explosive Heat of 
detonation 

(kJ/kg) EG (kJ/kg) f = EG/E0 σy/ P0 EG (kJ/kg) f = EG/E0 σy/ P0 

Cyclotol 5125 2691 0.525 0.0254 3892 0.76 0.0127 

Comp B 5015 2668 0.532 0.0312 3645 0.73 0.0156 

TNT 4519 2081 0.46 0.0439 2808 0.62 0.0219 

  Table 4. Showing σy/ P0 for both steel and copper together with the Gurney energies evaluated from 
cylinder test data for various explosives. 
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Figure 4: Showing the correlation of f (=EG/E0) with σy/ P0. 
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As can be seen from the graph there is a good correlation giving 
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which is in the form suggested if γ is taken as 3, a commonly assumed approximate 
value. The fact that f is smaller than suggested by (9) with γ = 3 may be taken as an 
indication that ES is not negligible in these cases. In the limit of weak casings, f →1 as 
would be expected at infinite expansion. 
 
Conclusions 
 The limitations of current formulae for calculating equivalent bare charge have 
been demonstrated by comparison with munition data. From experimental data it is 
clear that the nature of the casing material affects the Gurney energy of the explosive, 
and a correlation with σy/P0, the ratio of yield stress to initial pressure before case 
expansion, has been developed. 
 Further examination of munition data should now be undertaken, to evaluate the 
improvements in the predictions of the formulae when f is given by (10). In the mean 
time, the correlation (5) provides better estimates of equivalent bare charge in terms of 
M/C than (4), particularly at higher values of M/C. 
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